# Reducing Dehn filling and toroidal Dehn filling 

S. Boyer ${ }^{*}$, X. Zhang ${ }^{1}$<br>Département de Mathématiques, UQAM, P.O. Box 8888, Postal Station A, Montreal, Que, Canada H3C 3P8

Received 29 March 1995; revised 16 June 1995


#### Abstract

It is shown that if $M$ is a compact, connected, orientable hyperbolic 3-manifold whose boundary is a torus, and $r_{1}, r_{2}$ are two slopes on $\partial M$ whose associated fillings are respectively a reducible manifold and one containing an essential torus, then the distance between these slopes is bounded above by 4 . Under additional hypotheses this bound is improved. Consequently the cabling conjecture is shown to hold for genus 1 knots in the 3 -sphere.


Keywords: Dehn filling; Reducible slope; Essential torus slope; Cabling conjecture
AMS classification: 57M25; 57R65

## 0. Introduction

Let $M$ be a connected, compact, orientable, irreducible 3-manifold such that $\partial M$ is a torus. A slope on $\partial M$ is a $\partial M$-isotopy class of essential, unoriented, simple, closed curves on $\partial M$, and the distance between two slopes $r_{1}$ and $r_{2}$, denoted $\Delta\left(r_{1}, r_{2}\right)$, is the minimal geometric intersection number amongst all curves representing the slopes. To each slope $r$ on $\partial M$ we associate the manifold $M(r)$ obtained by attaching a solid torus to $M$ along $\partial M$ in such a way that the meridianal slope of the solid torus is identified with $r$.

Now consider two distinct slopes $r_{1}$ and $r_{2}$ on $\partial M$. Recently, there has been much work done on the problem of determining how constraints on the topology of $M\left(r_{1}\right)$ and $M\left(r_{2}\right)$ put constraints on $\Delta\left(r_{1}, r_{2}\right)$. For instance Gordon and Luecke [5] have shown that if $M\left(r_{1}\right)$ and $M\left(r_{2}\right)$ are reducible manifolds, then $\Delta\left(r_{1}, r_{2}\right)=1$ and Gordon [4] has shown that if $M$ is a hyperbolic manifold such that $M\left(r_{1}\right)$ and $M\left(r_{2}\right)$ are manifolds each of which contains an essential torus, then $\Delta\left(r_{1}, r_{2}\right) \leqslant 5$ except for four specific

[^0]manifolds $M$ for which $\Delta\left(r_{1}, r_{2}\right)=6,7$ or 8 is possible. Earlier, Gordon and Litherland [8, Proposition 6.1] showed that when $M$ is hyperbolic and $M\left(r_{1}\right)$ is a reducible manifold while $M\left(r_{2}\right)$ contains an incompressible torus, then $\Delta\left(r_{1}, r_{2}\right) \leqslant 5$ (see also [4, Theorem 1.2]). In this paper we improve this last result and show that 4 is an upper bound.

Theorem 0.1. Let $M$ be a compact, orientable, hyperbolic 3-manifold with $\partial M$ a torus. If $r_{1}$ and $r_{2}$ are slopes on $\partial M$ such that $M\left(r_{1}\right)$ is a reducible manifold while $M\left(r_{2}\right)$ contains an incompressible torus, then $\Delta\left(r_{1}, r_{2}\right) \leqslant 4$.

It is unknown whether or not the bound 4 is optimal (we expect that it is not), though the following example shows that the distance 3 between a reducible slope and an essential torus slope may be realized.

Let $W$ be the complement of the Whitehead link [11, Example 10, p. 68] and parameterize the slopes on each component of $\partial W$ by the standard meridian-longitude coordinates. If $M$ is the manifold obtained by Dehn filling one component of $\partial W$ with slope 6 , then it may be verified that
(i) $M$ is a hyperbolic manifold,
(ii) $M(4)$ contains an incompressible torus and $M(1)$ is a reducible manifold.

Fact (i) can be verified using Jeff Weeks' SNAPPEA programme and fact (ii) can be verified through the use of the Montesinos trick.

Theorem 0.1 can be sharpened if we consider certain additional hypotheses. For instance, if $M\left(r_{2}\right)$ contains an incompressible torus $T$ such that $T \cap \partial M$ is a 1 -sphere, then $\Delta\left(r_{1}, r_{2}\right) \leqslant 1$ (Lemma 4.1). We note that this result is sharp by taking $M$ to be as in the last paragraph and observing that $M(0)$ contains an incompressible torus which intersects $\partial M$ in a circle.

Recall that the cabling conjecture asserts that no noncabled knot in $S^{3}$ admits a surgery yielding a reducible manifold. As a consequence of Lemma 4.1, we derive the following result.

Theorem 0.2. Genus one knots in $S^{3}$ satisfy the cabling conjecture.

The conjecture has been proved for several classes of knots in $S^{3}$ including satellite knots [12], strongly invertible knots [2], alternating knots [10], most knots with symmetry, including all Montesinos knots [9]. It is also known that 0 -surgery on any nontrivial knot in $S^{3}$ yields an irreducible manifold [3] and that if some surgery on a nontrivial knot in $S^{3}$ yields a reducible manifold, then the surgery slope is an integer [6] and the resultant manifold contains a nontrivial lens space as a connected summand [7].

Theorem 0.1 will be proved by applying the combinatorial techniques developed in [1,4,8,13].

The authors would like to thank Paul Libbrecht for preparing the figures that appear in this paper.

## 1. Notations and definitions

All manifolds in this paper are understood to be orientable. We always assume that proper submanifolds meet in general position. For a manifold $W$, we use $\operatorname{int}(W)$ to denote its interior and $\partial W$ to denote its boundary. A regular neighborhood in $W$ of a subcomplex $Q \subset W$ will be denoted by $N(Q)$. By a surface we shall mean a compact, connected 2-manifold. A surface in a 3-manifold $W$ is called essential if it is properly embedded and is either (i) incompressible, not parallel to a subsurface of $\partial W$, and not a 2 -sphere, or (ii) a 2 -sphere that does not bound a 3-ball in $W$. We note that if $\partial M$ is a torus, then any essential surface in $M$ is also $\partial$-incompressible. A 3-manifold is called irreducible if it does not contain an essential 2-sphere; otherwise it is called reducible. A knot $K$ in a 3-manifold $W$ is said to be a cabled knot if there is another knot $K^{\prime}$ in $W$ such that $K \subset \partial N\left(K^{\prime}\right)$ and the winding number of $K$ in the solid torus $N\left(K^{\prime}\right)$ is larger than one. A compact 3-manifold is said to be cabled if it is the exterior of a cabled knot. Note that a cabled 3-manifold either contains an essential torus or is a Seifert fibred space (thus is not a hyperbolic manifold).

In what follows, we shall assume all of the conditions listed in Theorem 0.1. We may further assume that $M\left(r_{2}\right)$ is irreducible as otherwise the main result of [8] cited in Section 0 implies that $\Delta\left(r_{1}, r_{2}\right) \leqslant 1$.

Let $V_{i}$ be the solid torus attached to $M$ in forming $M\left(r_{i}\right), i=1,2$. Consider the family of essential 2-spheres in $M\left(r_{1}\right)$ which intersect $V_{1}$ in a family of meridianal discs, and let $S \subset M\left(r_{1}\right)$ be such a 2 -sphere chosen so that $S \cap V_{1}$ has the minimal number, say $n_{1}$, of components. Similarly, let $T \subset M\left(r_{2}\right)$ be an essential torus which intersects $V_{2}$ in a collection of meridian discs, the number of which, say $n_{2}$, is minimal amongst all such tori. Note that as $M$ is hyperbolic, $n_{i}>0, i=1,2$.

Now if $F_{1}=M \cap S$ and $F_{2}=M \cap T$, then $F_{1}$ is an essential planar surface in $M$ while $F_{2}$ is an essential punctured torus. We may assume that the number of components of $F_{1} \cap F_{2}$ is minimal amongst all the surfaces in $M$ isotopic to $F_{1}$ and transverse to $F_{2}$. Then no circle component of $F_{1} \cap F_{2}$ bounds a disk in $F_{1}$ or $F_{2}$, and no arc component of $F_{1} \cap F_{2}$ is boundary parallel in $F_{1}$ or $F_{2}$. Let $\Gamma_{1}$ (respectively $\Gamma_{2}$ ) be the graph in $S$ (respectively in $T$ ) obtained by taking the arc components of $F_{1} \cap F_{2}$ as edges and taking $S \cap V_{1}=S-\operatorname{int}\left(F_{1}\right)$ (respectively $T \cap V_{2}=T-\operatorname{int}\left(F_{2}\right)$ ) as fat vertices. Note that if $x_{j}$ is a vertex of $\Gamma_{\alpha}$, then $\partial x_{j}$ is a boundary component of $F_{\alpha}$.

We shall use the indices $\alpha$ and $\beta$ to denote 1 or 2 , with the convention that, when they are used together, $\{\alpha, \beta\}=\{1,2\}$.

Number the vertices of $\Gamma_{\alpha} x_{1}, \ldots, x_{n_{\alpha}}$ so that the corresponding components of $\partial F_{\alpha}$ appear consecutively on $\partial M$. By construction, each component $\partial x_{j}$ of $\partial F_{\alpha}$ intersects each component $\partial y_{k}$ of $\partial F_{\beta}$ in exactly $\Delta=\Delta\left(r_{1}, r_{2}\right)$ points. The ends of the edges in $\Gamma_{\alpha}$ may be labeled by an integer $k \in\left\{1,2, \ldots, n_{\beta}\right\}$ as follows. Let $*$ be the intersection of an edge $e$ of $\Gamma_{\alpha}$ with one of its vertices, say $x_{j}$. Then $*$ is labeled $k$ where $y_{k}$ is the unique vertex of $\Gamma_{\beta}$ such that $*=e \cap \partial x_{j} \cap \partial y_{k}$. Thus we may travel around $\partial x_{j}$ so that the labels appear in the order $1, \ldots, n_{\beta}, \ldots, 1, \ldots, n_{\beta}$ (repeated $\Delta$ times).

We fix an orientation on $F_{\alpha}$ and let each component $\partial x_{j}$ of $\partial F_{\alpha}$ have the induced orientation. Each component $\partial x_{j}$ can be assigned a " + " or " - " sign depending on whether or not its orientation is parallel on $\partial M$ to that on $\partial x_{1}$. Two vertices of $\Gamma_{\alpha}$ are called parallel if the corresponding boundary components of $F_{\alpha}$ have the same sign, and otherwise they are called antiparallel. Since $F_{1}, F_{2}$ and $M$ are orientable, one has the following constraint on $\Gamma_{1}$ and $\Gamma_{2}$.

Parity rule 1.1. An edge connects parallel vertices of $\Gamma_{\alpha}$ if and only if it connects antiparallel vertices in $\Gamma_{\beta}$.

Remark 1.2. If $S$ (respectively $T$ ) is separating in $M\left(r_{1}\right)$ (respectively in $M\left(r_{2}\right)$ ), then the number of vertices in $\Gamma_{1}$ (respectively in $\Gamma_{2}$ ) with a " + " sign is equal to the number of such vertices with a "-" sign. In particular, $n_{1}$ (respectively $n_{2}$ ) is an even integer.

Two edges are said to be parallel in $\Gamma_{\alpha}$ if they, together with some arcs in $\partial F_{\alpha}$, bound a disk in $F_{\alpha}$. A cycle $\sigma$ in $\Gamma_{\alpha}$ is any subgraph which becomes homeomorphic to a circle, after the (fat) vertices of $\Gamma_{\alpha}$ have been shrunk to points. The length of a cycle is the number of edges which it contains. A loop is a length one cycle, and we will call a loop trivial if it bounds a disk face of the graph. Note that by construction, $\Gamma_{\alpha}$ has no trivial loops. We shall consider two parallel loops as a length two cycle. We call a cycle $\sigma$ in $\Gamma_{2}$ essential if $\sigma$ does not bound a disk in $T$. A cycle $\sigma$ in $\Gamma_{\alpha}$ is called a Scharlemann cycle if it bounds a disk face of $\Gamma_{\alpha}$ disjoint from $F_{\beta}$ and if the edges of $\sigma$ connect parallel vertices of $\Gamma_{\alpha}$ and have the same two labels at their ends. Note that the two labels of a Scharlemann cycle in $\Gamma_{\alpha}$ are successive $\left(\bmod n_{\beta}\right)$. A length two Scharlemann cycle will be called an S-cycle. Note that the two edges of an S-cycle are adjacent parallel edges connecting two parallel (perhaps equal) vertices. The disk face bounded by an $S$-cycle is referred to as its $S$-disk. A length two cycle $\sigma^{\prime}=\left\{e_{1}^{\prime}, e_{2}^{\prime}\right\}$ in $\Gamma_{\alpha}$ is called an extended S-cycle if there is an S-cycle $\sigma=\left\{e_{1}, e_{2}\right\}$ in $\Gamma_{\alpha}$ such that $e_{i}$ and $e_{i}^{\prime}$ are parallel adjacent edges in $\Gamma_{\alpha}$ for $i=1,2$. The disk in $F_{\alpha}$ bounded by an extended S-cycle whose interior intersects the S-cycle is called the extended S-disk of the extended S-cycle.

The reduced graph $\bar{\Gamma}_{\alpha}$ is the graph obtained from $\Gamma_{\alpha}$ by amalgamating each complete set of mutually parallel edges of $\Gamma_{\alpha}$ to a single edge.

## 2. Preparatory lemmas

Lemma 2.1. Let $W$ be a compact irreducible 3-manifold. Then any nonseparating torus $T$ in $W$ is essential in $W$.

Proof. Let $T^{\prime}$ be a nonseparating torus in $W$. Any compression of $T^{\prime}$ which surgered it along an essential curve would produce a nonseparating 2 -sphere, contradicting the irreducibility of $W$. Thus $T^{\prime}$ must be incompressible. As it clearly cannot be $\partial$-parallel, $T^{\prime}$ is essential in $W$.

Lemma 2.2. (1) If $T$ is nonseparating in $M\left(r_{2}\right)$, then $\Gamma_{1}$ does not contain an $S$-cycle.
(2) If $S$ is nonseparating in $M\left(r_{1}\right)$, then $\Gamma_{2}$ does not contain an $S$-cycle.

Proof. (1) Suppose that $\left\{e_{1}, e_{2}\right\}$ is an S-cycle in $\Gamma_{1}$ with label pair $\{r, r+1\}$. Let $D$ be the S-disk of the given S-cycle and let $H$ be the part of the attached solid torus $V_{2}$ which lies between the disks $x_{r}$ and $x_{r+1}$ and is disjoint from other vertices of $\Gamma_{2}$. Then $Q=(\partial H \cup T)-\operatorname{int}\left(x_{r} \cup x_{r+1}\right)$ is a nonseparating closed genus two surface in $M\left(r_{2}\right), \operatorname{int}(D) \cap Q$ is empty and $\partial D \subset Q$ is a nonseparating simple closed curve in $Q$. Compressing $Q$ with $D$, we obtain a new nonseparating torus $T^{\prime}$ in $M\left(r_{2}\right)$, which is essential by Lemma 2.1. But the intersection of $T^{\prime}$ with $V_{2}$ has two fewer components than does $T$, which is impossible by the minimality of $n_{2}$. Thus $\Gamma_{1}$ cannot contain an S-cycle.
(2) The proof of part (2) is similar to that of part (1).

Lemma 2.3. $n_{1} \geqslant 3$.
Proof. First observe that if $n_{1}$ is either 1 or $2, F_{1}$ would be either a 2-disk or an annulus. In the former case, $M$ would have a compressible boundary, and thus it would be a solid torus. In the latter case, $M$ would either admit an essential torus or be Seifert fibred. In any event, none of the above possibilities can arise owing to the fact that $M$ is a hyperbolic manifold.

Lemma 2.4 [1, Corollary 2.6.7]. If $\Gamma_{\alpha}$ has more than $n_{\beta} / 2$ mutually parallel edges connecting parallel vertices of $\Gamma_{\alpha}$, then two of these edges form an S-cycle of $\Gamma_{\alpha}$.

Lemma 2.5. (1) $\Gamma_{2}$ cannot contain two $S$-cycles with different label pairs.
(2) $\Gamma_{2}$ cannot contain an extended $S$-cycle.
(3) $\Gamma_{2}$ cannot have more than $n_{1} / 2+1$ mutually parallel edges connecting parallel vertices.
(4) Suppose that $e_{1}, e_{2}$ are two parallel edges of $\Gamma_{2}$ connecting parallel vertices of $\Gamma_{2}$. If they have a label $r$ in common, then they form an $S$-cycle.

Proof. According to Lemma 2.3, $n_{1} \geqslant 3$. In the case that $n_{1}=3$, Remark 1.2 implies that $S$ is a nonseparating 2 -sphere in $M\left(r_{1}\right)$, and thus Lemma 2.2(2) shows that $\Gamma_{2}$ cannot have an S-cycle. In particular, parts (1) and (2) of the lemma do not arise. Similarly, applying Lemma 2.4 (respectively Parity rule 1.1), we see that part (3) (respectively part (4)) does not occur. Thus we may assume that $n_{1} \geqslant 4$. But then the proof of Lemma 2.5 proceeds exactly as in the proofs of [13, Lemmas 2.2-2.4].

The following lemma follows from the argument of [8, Proposition 1.3].
Lemma 2.6. $\Gamma_{2}$ cannot have $n_{1}$ mutually parallel edges, as otherwise $M$ would be cabled, and thus could not be hyperbolic.

Lemma 2.7. Let $W$ be an irreducible 3-manifold which contains an essential torus $T$. Suppose that $T^{\prime}$ is a torus in $W$ such that $T \cap T^{\prime}$ is an annulus which is essential in both $T$ and $T^{\prime}$. Then if $T^{\prime}$ compresses in $W$, it bounds a solid torus $U$ in $W$ such that $T \cap \operatorname{int}(U)=\emptyset$.

Proof. Using the irreducibility of $W$, we see that if $T^{\prime}$ compresses in $W$, then either it bounds a solid torus in $W$ or it is contained in a 3-ball in $W$. The latter can never occur, as otherwise the annulus $T \cap T^{\prime}$ would be homotopically trivial in $W$, and thus also in $T$, contradicting our hypotheses. It follows that there is a solid torus $U$ in $W$ whose boundary is $T^{\prime}$. Now $W$ cannot be a solid torus, and so in particular, $T^{\prime}$ separates $W$, and thus $T \subset U$ or $T \subset(W-\operatorname{int}(U))$. The incompressibility of $T$ in $W$ implies that the latter must occur, in other words $T \cap \operatorname{int}(U)=\emptyset$. This completes the proof of the lemma.

Lemma 2.8. Suppose that $\left\{e_{1}, e_{2}\right\}$ is an $S$-cycle in $\Gamma_{1}$ with label pair $\{r, r+1\}$. Then $e_{1} \cup e_{2} \cup x_{r} \cup x_{r+1}$ is an essential cycle in $\Gamma_{2}$.

Proof. Suppose, otherwise, that $e_{1} \cup e_{2} \cup x_{r} \cup x_{r+1}$ is contained in a disk $B$ of $T$. Let $D$ be the $S$-disk of the $S$-cycle $\left\{e_{1}, e_{2}\right\}$ in $\Gamma_{1}$, and let $H$ be the portion of the attached solid torus $V_{2}$ which lies between $x_{r}$ and $x_{r+1}$ and is disjoint from the other vertices of $\Gamma_{2}$. Then a regular neighborhood of $B \cup H \cup D$ in $M\left(r_{2}\right)$ is a punctured nontrivial lens space, which implies that $M\left(r_{2}\right)$, being irreducible, is itself a lens space. But then $M\left(r_{2}\right)$ cannot contain an essential torus, contradicting the defining property of $r_{2}$. Thus the cycle $e_{1} \cup e_{2} \cup x_{r} \cup x_{r+1}$ is essential in $T$.

In the case that $T$ separates $M\left(r_{2}\right)$ into two submanifolds $X_{1}$ and $X_{2}$, we shall say that an S-cycle lies on the $X_{i}$-side of $T$ if its associated S-disk lies in $X_{i}$.

Lemma 2.9. If $n_{2} \geqslant 3$ and $\Gamma_{1}$ contains an $S$-cycle, then $T$ separates $M\left(r_{2}\right)$ and the side containing the $S$-disk admits the structure of a Seifert fibred space with base orbifold the 2-disk having exactly two cone points. Furthermore, if $\Gamma_{1}$ contains two $S$-cycles with disjoint label pairs, then they both lie to the same side of $T$.

Proof. Denote the S-cycle by $\left\{e_{1}, e_{2}\right\}$ and its labels by $\{r, r+1\}$. In $\Gamma_{2}, e_{1}, e_{2}$ connect the vertices $x_{r}$ and $x_{r+1}$, which are antiparallel, and so unequal, by the Parity rule 1.1. Let $D$ be the $S$-disk and let $H$ be the portion of the attached solid torus $V_{2}$ which lies between $x_{r}$ and $x_{r+1}$ and is disjoint from the other vertices of $\Gamma_{2}$.

According to Lemma 2.2(1), the existence of the S-cycle implies that $T$ separates $M\left(r_{2}\right)$ into two irreducible submanifolds $X_{1}$ and $X_{2}$. Then from Remark 1.2 and our hypothesis, we may assume that $n_{2} \geqslant 4$.

Suppose now that the disk $D$ lies in $X_{1}$. Then $H \subset X_{1}$ also. Let $A_{1}$ be a thin regular neighbourhood in $T$ of the essential cycle $e_{1} \cup e_{2} \cup x_{r} \cup x_{r+1}$ (Lemma 2.8) and let $U_{1}$ be a regular neighborhood in $X_{1}$ of $A_{1} \cup H \cup D$. Then $\partial U_{1}$ is a torus which intersects $V_{2}$ in $2<n_{2}$ meridian discs, which shows that $\partial U_{1}$ must be compressible in $M\left(r_{2}\right)$. Since
$T=\partial X_{1}$ is essential in $M\left(r_{2}\right), \partial U_{1}$ is also compressible in $X_{1}$. Further note that $\partial U_{1}$ intersects $T$ in an annulus which is essential in both $T$ and $\partial U_{1}$. Thus by Lemma 2.7, $U_{1}$ is a solid torus.

Next let $U_{2}=X_{1}-\operatorname{int}\left(U_{1}\right)$. The boundary of $U_{2}$ is a torus which intersects $V_{2}$ in $n_{2}-2$ meridian disks, and so as before, we may deduce that $U_{2}$ is a solid torus. Now $X_{1}$ is the manifold obtained by gluing $U_{1}$ and $U_{2}$ along the annulus $A_{2}=\partial U_{1}-\operatorname{int}\left(A_{1}\right)$, which is essential in both $U_{1}$ and $U_{2}$. We may thereforc construct a Seifcrt structure on $X_{1}$ whose base orbifold is a 2-disk with at most two cone points. As $T=\partial X_{1}$ is incompressible in $X_{1}$, there are exactly two cone points. Finally observe that $e_{1} \cup e_{2} \cup x_{r} \cup x_{r+1}$ is isotopic to a fibre in this structure.

Assume now that $\Gamma_{1}$ contains another $S$-cycle $\left\{e_{1}^{\prime}, e_{2}^{\prime}\right\}$ with label pair $\{s, s+1\}$ disjoint from $\{r, r+1\}$. Let $D^{\prime}$ be the S -disk and let $H^{\prime}$ be the portion of the attached solid torus $V_{2}$ which lies between $x_{s}$ and $x_{s+1}$ and is disjoint from the other vertices of $\Gamma_{2}$.

Suppose that $D^{\prime} \subset X_{2}$ and construct $A_{1}^{\prime}, A_{2}^{\prime}, U_{1}^{\prime}$ and $U_{2}^{\prime}$ as in the previous paragraph. Then $X_{2}$ admits the structure of a Seifert fibred space having base orbifold the 2-disk with exactly two cone points. Furthermore, $e_{1}^{\prime} \cup e_{2}^{\prime} \cup x_{s} \cup x_{s+1}$ is isotopic to a fibre in this structure. But according to Lemma 2.8, $e_{1}^{\prime} \cup e_{2}^{\prime} \cup x_{s} \cup x_{s+1}$ is an essential cycle in $T$, and our hypotheses imply that it is disjoint from the essential cycle $e_{1} \cup e_{2} \cup x_{r} \cup x_{r+1}$. Thus these two cycles are parallel on $T$, and so $M\left(r_{2}\right)=X_{1} \cup X_{2}$ admits the structure of a Seifert fibred space over the 2 -sphere with exactly four singular fibres and for which $A_{1}$ is a vertical annulus. Now we may assume that $U_{1} \cap U_{1}^{\prime}=\emptyset$ and so both $U_{1} \cup U_{2}^{\prime}$ and $\overline{M\left(r_{2}\right)-\left(U_{1} \cup U_{2}^{\prime}\right)}=U_{1}^{\prime} \cup U_{2}$ are Seifert fibred over the 2-disk with exactly two singular fibres each. Hence $\partial\left(U_{1} \cup U_{2}^{\prime}\right)$ is an incompressible torus in $M\left(r_{2}\right)$. But this torus intersects $V_{2}$ in at most $n_{2}-2$ meridianal disks, contradicting our choice of $n_{2}$. Thus $D^{\prime}$ cannot lie in $X_{2}$, that is $D^{\prime} \subset X_{1}$.

A similar analysis to that used in the previous lemma proves the following one.

Lemma 2.10. If $n_{2} \geqslant 3$, then $\Gamma_{1}$ cannot contain an extended $S$-cycle.

Proof. Suppose, otherwise, that $\left\{e_{1}^{\prime}, e_{2}^{\prime}\right\}$ is an extended $S$-cycle in $\Gamma_{1}$ which extends the S-cycle $\left\{e_{1}, e_{2}\right\}$. By Lemma 2.2(1), $T$ is separating, and therefore by Remark 1.2 and our hypothesis, we may assume that $n_{2} \geqslant 4$.

Denote by $\{r, r+1\}$ the labels of the S-cycle, so that the extended S-cycle has labels $\{r-1, r+2\}\left(\bmod n_{2}\right)$. Then in $\Gamma_{2}, e_{1}^{\prime}, e_{2}^{\prime}$ connect the vertices $x_{r-1}$ and $x_{r+2}$, which are antiparallel by the Parity rule 1.1. Further note that as $n_{2} \geqslant 4,\left\{x_{r-1}, x_{r+2}\right\}$ and $\left\{x_{r}, x_{r+1}\right\}$ are disjoint in $\Gamma_{2}$. Let $D$ be the extended S-disk and let $H$ be the portion of the attached solid torus $V_{2}$ which lies between $x_{r-1}$ and $x_{r+2}$ and contains $x_{r}$ and $x_{r+1}$.

Claim. $e_{1}^{\prime} \cup e_{2}^{\prime} \cup x_{r-1} \cup x_{r+2}$ is an essential cycle of $\Gamma_{2}$.

Proof. If $e_{1}^{\prime} \cup e_{2}^{\prime} \cup x_{r-1} \cup x_{r+2}$ is contained in a disk in $T$, we may use Lemma 2.8 to find such a disk, $B$ say, which is disjoint from $e_{1} \cup e_{2} \cup x_{r} \cup x_{r+1}$. Then it is easy to


Fig. 1.
see that a regular neighborhood of $B \cup H \cup D$ in $M\left(r_{2}\right)$ is a nontrivial punctured lens space, which leads to a contradiction as in the proof of Lemma 2.8.

Thus $e_{1} \cup e_{2} \cup x_{r} \cup x_{r+1}$ and $e_{1}^{\prime} \cup e_{2}^{\prime} \cup x_{r-1} \cup x_{r+2}$ are disjoint, essential cycles of $\Gamma_{2}$, and so are parallel on $T$. Our goal is to use this observation along with Lemma 2.7 to construct a new essential torus in $M\left(r_{2}\right)$ which intersects $V_{2}$ in fewer meridian disks than does $T$, contradicting our initial choices.

Now the edges $e_{1}$ and $e_{2}$ divide the extended S-disk $D$ into three subdisks, denoted by $D_{0}, D_{1}, D_{2}$, with $D_{1}$, say, being the $S$-disk. The vertices $x_{r}$ and $x_{r+1}$ divide $H$ into three parts, denoted by $H_{0}, H_{1}, H_{2}$, with $H_{1}$, say, being that part which lies between $x_{r}$ and $x_{r+1}$ (Fig. 1). By Lemma 2.2(1), $T$ is a separating torus in $M\left(r_{2}\right)$. Let $X_{1}$ and $X_{2}$ be the two (irreducible) submanifolds in $M\left(r_{2}\right)$ bounded by $T$. We may assume that $X_{1}$
contains $H_{0}, H_{2}, D_{0}, D_{2}$ and that $X_{2}$ contains $H_{1}, D_{1}$. Letting the topological closure operation be denoted by an overbar, we have
(i) $\overline{T-\left\{x_{r-1}, x_{r}, x_{r+1}, x_{r+2}\right\}}$ splits into two annuli $A_{1}, A_{2}$, which are joined along the four arcs in $\partial D_{0} \cap T$ and $\partial D_{2} \cap T$.
(ii) For $j=0,2, M \cap \partial H_{j}$ is divided into two disks which intersect along the two arcs $\partial D_{0} \cap \partial H_{j}$ and $\partial D_{2} \cap \partial H_{j}$. Further, $H_{j}$ provides an isotopy of one disk to the other, relative to these two arcs.

There is a unique disk in $M \cap \partial H_{0}$ as described in (ii) which shares two boundary arcs with the annulus $A_{1}$, and similarly for $M \cap \partial \mathrm{H}_{2}$. The union of these two disks with $D_{0}$ and $D_{2}$ forms a band $B_{1}$ with two boundary components, i.e., an annulus, which is properly embedded in $X_{1}$ and for which $\partial B_{1}=\partial A_{1}$ (see Fig. 1). Now $T_{1}=A_{1} \cup B_{1}$ is a torus in $X_{1}$ which, after being pushed off of $H_{0} \cup H_{2}$, will intersect $V_{2}$ in a collection of fewer than $n_{2}$ meridian discs. Thus by the choice of $n_{2}, T_{1}$ compresses in $M\left(r_{2}\right)$, and hence also in $X_{1}$. Since $T \cap T_{1}=A_{1}$ is an essential annulus in both $T$ and $T_{1}$, we may invoke Lemma 2.7 to conclude that $T_{1}$ bounds a solid torus $U_{1}$ in $X_{1}$. Thus $X_{1}$ decomposes into two pieces $X_{1}=U_{1} \cup_{B_{1}} \overline{X_{1}-U_{1}}$. In fact $\overline{X_{1}-U_{1}}$ is also a solid torus. To see this, consider the torus $T_{2}=\overline{\left(T-A_{1}\right)} \cup B_{1} \subset X_{1}$ and note that $T_{2}$ may be pushed through $H_{0} \cup H_{2}$ by using the isotopies described in (ii). It follows that $T_{2}$ is isotopic to a torus which intersects $V_{2}$ in a collection of fewer than $n_{2}$ meridian discs. Thus $T_{2}$ is compressible in $M\left(r_{2}\right)$, and as above, it bounds a solid torus $U_{2}$ in $X_{1}$, which is necessarily $\overline{X_{1}-\bar{U}}$. We conclude that $X_{1}$ is the union of two solid tori $U_{1}$ and $U_{2}$, joined along the annulus $A_{1}$, which is essential in the boundary of each of them. $X_{1}$ therefore admits a Seifert structure whose base orbifold is a 2 -disk which has at most two cone points. As $T=\partial X_{1}$ is incompressible in $X_{1}$, there are exactly two cone points. Note also that in this structure, $A_{1}$ is a union of fibres, that is $A_{1}$ is vertical.

Since $n_{2} \geqslant 3$ and the given S-cycle lies to the $X_{2}$-side of $T$, Lemma 2.9 implies that there is also a Seifert structure on $X_{2}$ whose base orbifold is a 2-disk with exactly two cone points. More precisely, let $A_{3}$ be a thin regular neighbourhood in $T$ of the cycle $e_{1} \cup c_{2} \cup x_{r} \cup x_{r+1}$ and let $U_{3}$ be a regular neighborhood in $X_{2}$ of $\Lambda_{3} \cup H_{1} \cup D_{1}$. Then the proof of Lemma 2.9 shows that both $U_{3}$ and $U_{4}=X_{2}-\operatorname{int}\left(U_{3}\right)$ are solid tori which intersect along an annulus which is essential in both $U_{3}$ and $U_{4}$ and vertical with respect to the Seifert structure on $X_{2}$. By construction, both $A_{1}$ and $A_{3}$ are vertical annuli in this structure.

Next we consider $M\left(r_{2}\right)$. Now $A_{1} \subset T$ is a vertical annulus in both $X_{1}$ and $X_{2}$, and so the two fibrings are isotopic when restricted to $T$. Hence $M\left(r_{2}\right)$ is Seifert fibred over the 2-sphere with exactly four singular fibres in such a way that $A_{3}=U_{2} \cap U_{3}$ is vertical. Then $U_{2} \cup U_{3}$ and $\overline{M\left(r_{2}\right)-\left(U_{2} \cup U_{3}\right)}$ are Seifert fibred over the 2-disk with exactly two singular fibres each. Hence $\partial\left(U_{2} \cup U_{3}\right)$ is an incompressible torus in $M\left(r_{2}\right)$. But this torus intersects $V_{2}$ in at most $n_{2}-2$ meridianal disks, contradicting our choice of $n_{2}$. Thus $\Gamma_{1}$ can contain no extended S-cycle.

Lemma 2.11. If $n_{2} \geqslant 3$, then $\Gamma_{1}$ cannot have more than $n_{2} / 2+2$ mutually parallel edges connecting parallel vertices of $\Gamma_{1}$.

Proof. Otherwise using Lemma 2.4, $\Gamma_{1}$ would contain an S-cycle, and so $T$ would be separating by Lemma 2.1(1). It follows from Remark 1.2 that $n_{2}$ is an even integer. It is now easy to see that $\Gamma_{1}$ contains an extended S-cycle, contradicting Lemma 2.10.

## 3. Proof of Theorem 0.1 when $n_{2} \geqslant 3$

In this section we prove Theorem 0.1 under the additional hypothesis that $n_{2} \geqslant 3$. The case that $n_{2} \leqslant 2$ will be dealt with separately in Section 4 . To obtain a contradiction, we shall suppose that $\Delta=\Delta\left(r_{1}, r_{2}\right) \geqslant 5$. Recall that $\bar{\Gamma}_{2}$ denotes the reduced graph of $\Gamma_{2}$ in $T$.

Claim 3.1. Each vertex of $\bar{\Gamma}_{2}$ has valency at least 6 .
Proof. Suppose otherwise that $\bar{\Gamma}_{2}$ has a vertex of valency at most 5 . Then since $\Delta \geqslant 5$, in $\Gamma_{2}$ there is a family of at least $n_{1}$ mutually parallel edges. But this contradicts Lemma 2.6.

Claim 3.2. Each vertex of $\bar{\Gamma}_{2}$ has valency 6.
Proof. A face of $\Gamma_{2}$ is a component of the complement of an open regular neighbourhood of $\Gamma_{2}$ in $T$. If $v$ and $e$ denote the number of vertices and edges in $\Gamma_{2}$, then it is easy to see that

$$
0=\chi(T)=v-e+\sum \chi(F)
$$

where the sum is taken over the faces $F$ of $\Gamma_{2}$. By Claim 3.1, each vertex of $\bar{\Gamma}_{2}$ has valency at least 6 . Hence we have $2 e \geqslant 6 v$, that is $v \leqslant e / 3$. Now let $d$ be the number of disk faces of $\bar{\Gamma}_{2}$. By construction, each disk face of $\bar{\Gamma}_{2}$ has at least three sides. Hence we have $2 e \geqslant 3 d$ and thus $d \leqslant 2 e / 3$. Substituting these inequalities into the identity above shows that

$$
0=v-e+\sum \chi(F) \leqslant v-e+d \leqslant \frac{e}{3}-e+\frac{2 e}{3}=0
$$

It follows that all of the above inequalities are in fact equalities. In particular the claim must hold.

Thus the ends of the edges incident to a given vertex of $\Gamma_{2}$ can be partitioned into six families such that each family consists of ends of mutually parallel edges of $\Gamma_{2}$.

Claim 3.3. Among the six families of ends around each vertex $y$ of $\Gamma_{2}$, there is at most one family which are ends of edges connecting $y$ to a parallel vertex.

Proof. Suppose otherwise that there are two such families. By Lemma 2.5(3), two such families occupy at most $2\left(n_{1} / 2+1\right)=n_{1}+2$ ends. By Lemma 2.6, the remaining four families occupy at most $4\left(n_{1}-1\right)$ ends. Hence there is a total of at most $5 n_{1}-2$ ends
of edges incident to $y$. But we have assumed that there are $\Delta n_{1} \geqslant 5 n_{1}$ ends of edges of $\Gamma_{2}$ incident to $y$ and so a contradiction is derived.

Combining Claim 3.3 and Lemma 2.5 we deduce that at each vertex $y$ of $\Gamma_{2}$, the ends of edges which belong to edges of $\Gamma_{2}$ connecting $y$ to antiparallel vertices are successive, and their number is at least $\Delta n_{1}-\left(n_{1} / 2+1\right)$. Therefore by the parity rule, we have

Claim 3.4. Let $r \in\left\{1, \ldots, n_{2}\right\}$ be any given label. Among the $\Delta$ ends of edges with the label $r$ around each vertex $x_{j}$ of $\Gamma_{1}$, there is at most one which belongs to an edge connecting $x_{j}$ to an antiparallel vertex of $\Gamma_{1}$.

Now we consider the reduced graph $\bar{\Gamma}_{1}$ of $\Gamma_{1}$ in $S$.
Claim 3.5. $\bar{\Gamma}_{1}$ has a vertex of valency at most 5 .
Proof. Suppose otherwise that every vertex of $\bar{\Gamma}_{1}$ has valency at least 6. Let $v, e, d$ be the number of vertices, edges and disk faces of $\bar{\Gamma}_{1}$. Then arguing as in the proof of Claim 3.2, we have

$$
2=\chi(S) \leqslant v-e+d \leqslant \frac{e}{3}-e+\frac{2 e}{3}=0,
$$

which is absurd.
Fix then a vertex $x$ of $\bar{\Gamma}_{1}$ of valency $k \leqslant 5$.
Claim 3.6. There is a family of $n_{2}$ parallel edges in $\Gamma_{1}$ which are incident to $x$ and which connect $x$ to a parallel vertex.

Assuming the truth of this claim for the moment, Lemma 2.4 guarantees that $\Gamma_{1}$ contains an S-cycle, and so $n_{2}$ is even by Lemma 2.2(1) and Remark 1.2. Hence $n_{2} \geqslant 4$. On the other hand, the claim also implies that $n_{2} \leqslant 4$, as Lemma 2.11 forces the inequality $n_{2} \leqslant n_{2} / 2+2$ when $n_{2} \geqslant 3$. Therefore the proof of Theorem 0.1 when $n_{2} \geqslant 3$ will be reduced to the consideration of the case where $n_{2}=4$.

Proof. The ends of edges in $\Gamma_{1}$ incident to $x$, and which connect $x$ to a parallel vertex can be divided into $k \leqslant 5$ families, each belonging to mutually parallel edges of $\Gamma_{1}$. If every end at $x$ belongs to an edge of $\Gamma_{1}$ connecting $x$ to a parallel vertex, then we have at least $\left(\Delta n_{2}\right) / 5 \geqslant n_{2}$ successive ends at $x$ belonging to mutually parallel edges of $\Gamma_{1}$, completing the proof of the claim.

Assume then that there is at least one end incident to $x$ which belongs to an edge of $\Gamma_{1}$ connecting $x$ to an antiparallel vertex. By Claim 3.4, there are at least $(\Delta-1) n_{2}$ ends at $x$ which belong to edges of $\Gamma_{1}$ connecting $x$ to parallel vertices. Then at $x$, there is a family of at least $\left((\Delta-1) n_{2}\right) / 4 \geqslant n_{2}$ successive ends which belong to mutually parallel edges of $\Gamma_{1}$ connecting $y$ to a parallel vertex.


Fig. 2.

As noted above, Claim 3.6 reduces us to the case $n_{2}=4$. Assume this and let $y_{i}, i=1,2,3,4$, be the four vertices of $\Gamma_{2}$. By Remark 1.2 , we may assume that $y_{1}, y_{3}$ are assigned a " + " sign while $y_{2}, y_{4}$ are assigned a "-" sign. We know from Claim 3.6 that incident to the vertex $x$ of $\Gamma_{1}$, there are $n_{2}=4$ successive ends which belong to mutually parallel edges of $\Gamma_{1}$ connecting $x$ to a parallel vertex (perhaps $x$ itself). Let $e_{i}, i=1,2,3,4$, be four such edges. Using the parity rule, one can easily see that either the four edges form an extended S-cycle in $\Gamma_{1}$ or they form two S-cycles with disjoint label pairs in $\Gamma_{1}$. The former case is impossible by Lemma 2.11. In the latter case we may assume that $\left\{e_{1}, e_{2}\right\}$ form one $S$-cycle with label pair $\{1,2\}$ and $\left\{e_{3}, e_{4}\right\}$ form the other S-cycle with label pair $\{3,4\}$. By Lemma 2.8, the two cycles $e_{1} \cup e_{2} \cup y_{1} \cup y_{2}$ and $e_{3} \cup e_{4} \cup y_{3} \cup y_{4}$ in $\Gamma_{2}$ are essential and disjoint (see Fig. 2).

Now let us return to the reduced graph $\bar{\Gamma}_{2}$. We may consider Fig. 2 to be a subgraph of $\bar{\Gamma}_{2}$. The cycles $e_{1} \cup e_{2} \cup y_{1} \cup y_{2}$ and $e_{3} \cup e_{4} \cup y_{3} \cup y_{4}$ divide $T$ into two annuli, and since each vertex of $\bar{\Gamma}_{2}$ has valency 6 (Claim 3.2), it may be argued that in each of these annuli, there is an edge of $\bar{\Gamma}_{2}$ connecting $y_{1}$ and $y_{3}$. But then in $\bar{\Gamma}_{2}$, there are distinct edges which connect $y_{1}$ and $y_{3}$. As $y_{1}, y_{3}$ are parallel vertices, we obtain a contradiction to Claim 3.3. This completes the proof of Theorem 0.1 when $n_{2} \geqslant 3$.

## 4. Proof of Theorem 0.1 when $n_{2} \leqslant 2$

In this section we complete the proof of Theorem 0.1 by dealing with the special cases $t_{2}=1$ and $\pi_{2}=2$. In fact we obtain sharp estimates for $\Delta=\Delta\left(r_{1}, r_{2}\right)$ and use these to prove Theorem 0.2. First we show

Lemma 4.1. Suppose that $n_{2}=1$, then $\Delta=1$.


Fig. 3.

Proof. Suppose to the contrary that $\Delta \geqslant 2$. Recall that there are no trivial loops in $\Gamma_{2}$, and so the same holds for $\bar{\Gamma}_{2}$. On the other hand, our hypothesis that $n_{2}=1$ implies that $\bar{\Gamma}_{2}$ has only one vertex, and so every edge of $\bar{\Gamma}_{2}$ is necessarily an essential cycle in $T$. One may now argue that $\bar{\Gamma}_{2}$ is a subgraph of the graph illustrated in Fig. 3 (for a proof see [4, Lemma 5.1]). Hence the valency of the vertex of $\bar{\Gamma}_{2}$ is either 2 or 4 or 6 . Correspondingly in $\Gamma_{2}$, we have either $k=1,2$ or 3 families of mutually parallel edges. Order these families in a clockwise fashion around the vertex and let $p_{i}$ be the number of edges in the $i$ th family. Then counting the ends at the vertex we have

$$
\begin{equation*}
\Delta n_{1}=2 \sum_{i=1}^{k} p_{i} \tag{1}
\end{equation*}
$$

On the other hand, Lemma 2.5(3) implies the following inequalities,

$$
\begin{equation*}
2 n_{1} \leqslant \Delta n_{1} \leqslant 2 k\left(\frac{n_{1}}{2}+1\right)=k\left(n_{1}+2\right) \leqslant 3\left(n_{1}+2\right) \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta n_{1}=2 k\left(\frac{n_{1}}{2}+1\right) \text { if and only if } p_{i}=\left(\frac{n_{1}}{2}+1\right) \text { for } i=1,2, \ldots, k \tag{3}
\end{equation*}
$$

As $n_{1} \geqslant 3$ (Lemma 2.3), we immediately deduce that $k>1$ and that $\Delta \leqslant 5$. Furthermore, if $\Delta=5$, then the second and third inequalities in (2) are equalities, which forces the identity $n_{1}-3$ and so by (3), $p_{i}-2.5$ for each $i$, which is clearly false. Thus we must have $\Delta \leqslant 4$.

Claim. $\Delta=3$.


Fig. 4.

Proof of the claim. If $\Delta \neq 3$, then it must be either 2 or 4 . Assume this and rewrite identity (1) as

$$
\sum_{i=1}^{k} p_{i}=\left(\frac{\Delta}{2}\right) n_{1}
$$

Then if $e_{1}, \ldots, e_{p_{i}}$ is one of the families of mutually parallel edges in $\Gamma_{2}$, the eveness of $\Delta$ implies that the labels of the ends of these edges are labeled $\left(\bmod n_{1}\right)$ as shown in Fig. 4. But then by Lemma 2.5(4), we have $p_{i}=2$, and the edges form an S-cycle. Thus for each $i=1, \ldots, k$ the $i$ th family of edges forms an S-cycle. Finally, as $n_{1} \geqslant 3$, the first two S-cycles have distinct labeling pairs, which contradicts Lemma 2.5(1). The claim is therefore proved.

Assume then that $\Delta=3$. Substituting this value into identity (1) shows that $n_{1}$ is even, and so by Lemma 2.3 we have $n_{1} \geqslant 4$. On the other hand, if we suppose now that $k=2$, inequalities (2) show that $n_{1} \leqslant 4$, and so $n_{1}=4$. Note then that $\Delta n_{1}=2 k\left(n_{1} / 2+1\right)$, and therefore from identity (3) we obtain $p_{1}=p_{2}=3$. Appealing to Fig. 3 shows that there is an edge of $\Gamma_{2}$ having identical labels at both of its ends, which contradicts the parity rule. Thus we must have $k=3$.

We observed in the previous paragraph that $n_{1} \geqslant 4$ is even, say $n_{1}=2 m$ where $m>1$. Fix $i \in\{1,2,3\}$ so that $p_{i}=\max \left\{p_{1}, p_{2}, p_{3}\right\}$, and let $e_{1}, \ldots, e_{p_{i}}$ be the associated family of parallel edges. Then from identity (1) we see that $p_{i} \geqslant m$. But by Lemma 2.5(3), $p_{i} \leqslant m+1$, and therefore $p_{i}=m$ or $p_{i}=m+1$. The latter is impossible, for if it held, identity (1) would imply that the ends of $e_{p_{i}}$ (see Fig. 5) would be labeled $p_{i}=m+1$ and $p_{1}+p_{2}+p_{3}+1=3 m+1 \equiv m+1\left(\bmod n_{1}\right)$, which contradicts the parity rule. Thus $p_{i}=m$. Given our choice of $p_{i}$ and considering identity (1), we see that $p_{1}=p_{2}=p_{3}=m$. Therefore $\Gamma_{2}$ is a graph shown in Fig. 6.


Fig. 5.


Fig. 6.
From Fig. 6, we see that in $\Gamma_{2}$ there are two Scharlemann cycles of length 3, one with label pair $\{m, m+1\}$ and the other with the different label pair $\left\{1, n_{1}\right\}$. But by the minimality assumption on $n_{1}$, there can never be two such Scharlemann cycles. This is proved using an argument similar to that found in the proof of [13, Lemma 2.2]. This final contradiction completes the proof of Lemma 4.1.

Theorem 4.2. Genus one knots in $S^{3}$ satisfy the cabling conjecture.
Proof. Let $K \subset S^{\mathbf{3}}$ be a genus one knot which is not a cabled knot, but which admits a surgery slope which yields a reducible manifold. According to [12], $K$ is not a satellite knot. Hence $K$ is a hyperbolic knot, i.e., $M=S^{3}-\operatorname{int} N(K)$ is a hyperbolic manifold. According to [3], $M(0)$ is an irreducible manifold. Thus Lemma 2.1 shows that the


Fig. 7.
hypothesized genus one Seifert surface for $K$ will produce an essential nonseparating torus $T$ in $M(0)$.

Now suppose that $M(r)$ is a reducible manifold for some slope $r$. By [5,6], $r$ is an integral slope with $|r| \geqslant 2$. But then $\Delta(0, r)=|r| \geqslant 2$, which contradicts Lemma 4.1. Thus there is no such knot, and the proof is complete.

Lemma 4.3. Suppose that $n_{2}=2$, then $\Delta \leqslant 3$.

Proof. We assume that $\Delta \geqslant 4$ so as to obtain a contradiction. It may be argued that the reduced graph $\bar{\Gamma}_{2}$ of $\Gamma_{2}$ in $T$, is a subgraph of the graph illustrated in Fig. 7 (for a proof see [4, Lemma 5.2]). Hence there are at most five families of mutually parallel edges in $\Gamma_{2}$ incident to each of the two vertices, and one of the five families is a set of parallel loops. Let $p_{i} \geqslant 0$ be the number of edges in each of the five families, $i=1,2,3,4,5$, with $p_{1}$ being the number of the parallel loops. Note then that

$$
\begin{equation*}
\Delta n_{1}=2 p_{1}+p_{2}+p_{3}+p_{4}+p_{5} \tag{4}
\end{equation*}
$$

Now by Lemma 2.5(3), $p_{1} \leqslant\left(n_{1} / 2+1\right)$, and by Lemma $2.6 p_{i} \leqslant\left(n_{1}-1\right)$ for $2 \leqslant i \leqslant 5$. Thus identity (4) shows that $\Delta \leqslant 4$, and so we may assume that $\Delta=4$. Substituting this value for $\Delta$ into (4) and using a similar reasoning, we see that $p_{i}>0$ for each $i=1, \ldots, 5$. So we may assume that $\Gamma_{2}$ is as shown in Fig. 8. It follows that without loss of generality, we may assume that $p_{1}+p_{2}+p_{3} \geqslant 2 n_{1}$.

Now consider the labels around one of the two vertices $\left\{y_{1}, y_{2}\right\}$ of $\Gamma_{2}$, say around $y_{1}$, and let $e_{1}, \ldots, e_{p_{1}}$ be the edges of $\Gamma_{2}$ which form the $p_{1}$ parallel loops. Let $r \in$ $\left\{1,2, \ldots, n_{1}\right\}$ be the label of the other end of $e_{p_{1}}$. Now from the form of $\Gamma_{2}$ (see Fig. 8), $r \equiv p_{1}+p_{2}+p_{3}+1\left(\bmod n_{1}\right)$. On the other hand, by construction

$$
2 n_{1}<p_{1}+p_{2}+p_{3}+1 \leqslant\left(\frac{n_{1}}{2}+1\right)+2\left(n_{1}-1\right)+1=\frac{n_{1}}{2}+2 n_{1}<3 n_{1}
$$



Fig. 8.

Hence $p_{1}+p_{2}+p_{3}+1=r+2 n_{1}$. Then

$$
p_{1}=r+2 n_{1}-\left(p_{2}+p_{3}+1\right) \geqslant r+2 n_{1}-2\left(n_{1}-1\right)-1=r+1
$$

i.e., $1 \leqslant r \leqslant p_{1}-1$. Therefore there are two edges amongst $\left\{e_{1}, \ldots, e_{p_{1}}\right\}$ which have $p_{1}$ as a common label. Applying Lemma 2.5(4) we see that $\left\{e_{p_{1}-1}, e_{p_{1}}\right\}$ are part of an $S$-cycle in $\Gamma_{2}$. In particular $r=p_{1}-1$. But we have already seen that $p_{1}+p_{2}+p_{3}+1=r+2 n_{1}$, and so $p_{2}+p_{3}=2 n_{1}-2$. From Lemma 2.6 we deduce that $p_{2}=p_{3}=n_{1}-1$.

Next apply the same argument to the family of edges forming a loop at $y_{2}$ to deduce that they also contain an S-cycle in $\Gamma_{2}$ which is situated as indicated in Fig. 9, and also has label pair $\left\{p_{1}-1, p_{1}\right\}$ by Lemma 2.5(1).

Suppose now that the two vertices of $\Gamma_{2}$ are parallel. According to Lemma 2.3 and Lemma $2.5(3), 3 \leqslant n_{1} \leqslant 4$. On the other hand, $\Gamma_{2}$ contains an S-cycle, so $n_{1}$ is even by Lemma 2.2(2) and Remark 1.2. Hence $n_{1}=4, p_{2}=p_{3}=n_{1}-1=3$, and

$$
2 \leqslant p_{1} \leqslant \frac{n_{1}}{2}+1=3
$$

In the case $p_{1}=2$, all S-cycles in $\Gamma_{2}$ are labeled $\{1,2\}$. The labels at the ends of the family of $p_{2}=3$ parallel edges, connecting the two vertices in $\Gamma_{2}$, are therefore


Fig. 9.
determined and it can be seen that there is an edge both of whose labels are 4 , which contradicts the parity rule. A similar argument shows that it is impossible for $p_{1}$ to be 3 . Thus $y_{1}$ and $y_{2}$ cannot be parallel.

Assume then that the two vertices of $\Gamma_{2}$ are antiparallel. We may fill in the labels at $y_{2}$ and then apply the parity rule to the ends of the $p_{2}$ edges from the second family to deduce that all the vertices of $\Gamma_{1}$ are parallel (see Fig. 9). But this is impossible as the existence of a loop in $\Gamma_{2}$ means that there are two antiparallel vertices in $\Gamma_{1}$. This contradiction completes the proof of Lemma 4.5.

## References

[1] M. Culler, C. Gordon, J. Luecke and P. Shalen, Dehn surgery on knots, Ann. of Math. 125 (1987) 237-300.
[2] M. Eudave-Muñoz, Band sum of links which yield composite links: The cabling conjecture for strongly invertible knots, Trans. Amer. Math. Soc. 330 (1992) 463-501.
[3] D. Gabai, Foliations and the topology of 3-manifolds III, J. Differential Geom. 26 (1987) 479-536.
[4] C. Gordon, Boundary slopes of punctured tori in 3-manifolds, Preprint.
[5] C. Gordon and J. Luecke, Reducible manifolds and Dehn surgery, Topology, to appear.
[6] C. Gordon and J. Luecke, Only integral Dehn surgery can yield reducible manifolds, Math. Proc. Cambridge Philos. Soc. 102 (1987) 97-101.
[7] C. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371-415.
[8] C. Gordon and R. Litherland, Incompressible planar surfaces in 3-manifolds, Topology Appl. 18 (1984) 121-144.
[9] E. Luft and X. Zhang, Symmetric knots and the cabling conjecture, Math. Ann., to appear.
[10] W. Menasco and M.B. Thistlethwaite, Surfaces with boundary in alternating knot exteriors, J. Reine Angew. Math. 426 (1992) 47-65.
[11] D. Rolfsen, Knots and Links (Publish or Perish, Berkeley, CA, 2nd ed., 1990).
[12] M. Scharlemann, Producing reducible 3-manifolds by surgery on a knot, Topology 29 (1990) 481-500.
[13] Y. Wu, The reducibility of surgered 3-manifolds, Topology Appl. 43 (1992) 213-218.


[^0]:    * Corresponding author. Partially supported by grants: NSERC OGP 0009446 and FCAR EQ 3518.
    ${ }^{1}$ Supported by a postdoctoral fellowship from the Centre de Recherches Mathematiques.

